Scheduling in Multi-Channel Wireless
Networks with Limited Information

Technical Report (February 10, 2008)

Vartika Bhandari Nitin H. Vaidya
Dept. of Computer Science, and Dept. of Electrical and Computer Eng., and
Coordinated Science Laboratory Coordinated Science Laboratory
University of lllinois at Urbana-Champaign University of lllinois at Urbana-Champaign
vbhandar@uiuc.edu nhv@uiuc.edu
Abstract

The availability of multiple orthogonal channels in a wes$ network can potentially lead to substantial perfor-
mance improvement by alleviating contention and interfeee However, this also gives rise to non-trivial channel
coordination issues. The situation is exacerbated by biitiain the achievable data-rates across channels and
links. Thus, scheduling in such networks may require sulbstainformation-exchange and lead to non-negligible
overhead. This provides a strong motivation for the studpafeduling algorithms that can operate with limited
information, while still providing acceptable worst-cagerformance guarantees. In this paper, we make an effort
in this direction, by examining the scheduling implicasoaf multiple channels, and heterogeneity in channel-
rates. We establish lower bounds on performance of a classaafmalschedulers, and describe a scheduler that
require limited information-exchange between nodes. W& flemonstrate that when the underlying scheduling
mechanism is “imperfect”, the presence of multiple orthegjochannels can help alleviate the detrimental impact
of the imperfect scheduler, and yield a significantly beé#iciency-ratio in a wide range of network topologies.
We then establish performance bounds for a scheduler tharadaieve good efficiency-ratios in the presence of
channels with heterogeneous rates without requiring eitpixchange of queue-information. Our results indicate
that it may be possible to achieve a desirable trade-off éetwperformance and information.

I. INTRODUCTION

Appropriate scheduling policies are of utmost importanceachieving good throughput characteristics in a
wireless network. The seminal work of Tassiulas and Ephidemiyielded ahroughput-optimalscheduler, which
can schedule all “feasible” traffic flows without resulting unbounded queues [1]. However, such an optimal
scheduler is difficult to implement in practice. Thus vasamperfect scheduling strategies that trade-off throughp
for simplicity have been proposed [2], [3], [4], [5] amongghers.

The availability of multiple orthogonal channels in a wes$ network can potentially lead to substantial perfor-
mance improvement by alleviating contention and interfeez However, this also gives rise to non-trivial channel
coordination issues. The situation is exacerbated by bifitiain the achievable data-rates across channels and
links. Computing an optimal schedule, even in a single-okanetwork, is almost always intractable both due to
need for global information, and computational complexitpwever, imperfect schedulers requiring limitkedtal
information can typically be designed, which provide atebfe worst-case (and typically much better average
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case) performance degradation compared to the optimalmual&-channel network, the local information exchange
required by even an imperfect scheduler can be quite pribrebias information may be needed on a per-channel
basis. For instance, Lin and Rasool [6] have described adstihg algorithm for multi-channel multi-radio wireless
networks that requires information abguér-channelqueues at all interfering links.

This provides a strong motivation for the study of schedyhigorithms that can operate with limited information,
while still providing acceptable worst-case performanaargntees. In this paper, we make an effort in this direction
by examining the scheduling implications of multiple chelsn and heterogeneity in channel-rates. We establish
lower bounds on performance of a classnadiximalschedulers, and describe some schedulers that requitedimi
information-exchange between nodes. Some of the boundemrr here improve on bounds developed in past
work [6].

We begin by analyzing the performance of a centralized gremedximal scheduler. A lower bound for this
scheduler was established in [6], which is tight in the sdhaéthere exists a network topology in which the upper
bound matches this lower bound. However, in a large variétyetwork topologies, the lower bound can be quite
loose. Thus is particularly true for networks with singleeiriace nodes. We establish an alternative bound that is
tighter in a range of topologie©ur results indicate that when the underlying schedulingmaaism is imperfect,
the presence of multiple orthogonal channels can help iatevthe impact of the imperfect scheduler, and yield a
significantly better efficiency-ratio in a wide range of sagos.

We then consider the possibility of achieving efficiencticacomparable to the centralized greedy maximal
scheduler using a simpler scheduler that works with limitddrmation. We establish results for a class of maximal
schedulers coupled with local queue-loading rules thataorequire queue-information from interfering nodes.

On a related note, cross-layer resource allocation in rehiinnel wireless networks has been considered in [7].

Il. PRELIMINARIES

We consider a multi-hop wireless network. For simplicity will limit much of our discussion to nodes equipped
with a single interface (or single radio) capable of tuniogy one available channel at any given time. The interface
may switch between channels if desired. The results predentthe paper can also be used to obtain results for
the case when each node is equipped with multiple interfage<riefly discuss this issue.

The wireless network is viewed as a directed graph, with eacted link in the graph representing an available
communication link. We model interference usingamflictrelation between links. Two links are said to conflict with
each other if only one of the links can be scheduled reliahla @ertain channel simultaneously. (As we will discuss
later, conflicts can also occur between a pair of links whers¢hlinks need to share the same wireless interface).
The conflict relation is assumed to be symmetric. The corfiited interference model is an approximation of the
reality — while it does not capture the wireless channel isedy, it is more amenable to analysis, which in turn
provides useful insights on performance of wireless netaoas well as insights useful in protocol design. Such
conflict-based interference models have been used frdguanthe past work as well (e.g., [6]).

Time is assumed to be slotted, with the slot duration beingif.time (that is, we use slot duration as the time
unit ). In each time slot, the scheduler used in the netwot&rd@nes which links should transmit in that time slots,
as well as the channel to be used for each such transmiss®moWw introduce some notation and terminology.

The network is viewed as a collection of directed links, veheach link is a pair of nodes capable of direct
communication with non-zero rate.

« L denote the set of directed links in the network.

« Cis the set of all available orthogonal channels. THG$,is the number of available channels.

« We say that a scheduler schedules link-channel @ad) if it schedules linkl for transmission on channel

« ¢ denotes rate achievable on lilkoy operating linkl on channel, provided that no conflicting link is also



scheduled on channel We assume that® >0 for all | € £ andc € C 1. We also deifne the following terms:

rmax=_Mmax rf, andrmin=_min r¢ When two conflicting links are scheduled simultaneously a» shme
leL,ceC . leL,ceC

channel, both achieve rate 0.

« [Bs denotes the “self-skew-ratio”, defined as the minimum raBbween rates supportable owifferentchannels
on asinglelink. Therefore, for any two channetsandd, and any linkl, we have%r; > Bs. Note that O< s < 1.
Bc denotes the “cross-skew-ratio”, defined as the minimuno fagitween rates supportable over faenechannel
on differentlinks. Therefore, for any channel and any two linkd andl’, we have that%:é > B¢. Note that

0<Bc <1

re

Letr = maCx rf. Letos= r|n|Ln CEZ” Note thatos > 1+ Bs(0s— 1). Moreover, typicallyos will be much larger
ce S

than this worst-case bounds is largest wherf3s = 1, and thenos = |C]|.

b(I) ande(l), respectively, denotes the nodes at the two endpoints akall particular, linkl is directed from
nodeb(l) to nodee(l).

E(b(l))and E(e(l))denote the set of links incident on nodbd) and e(l), respectively. Thus, the links in
E(b(l))and E(e(l))share a node with link. Since we are focusing on single-interface nodes, thisigaghat
if link | is scheduled in a certain time slot, no other link4t{b(l))or £(e(l))can be scheduled at the same
time. This is referred to as an interface conflids noted previously, our results (and the notion of integfa
conflict) can also be extended to the multi-interface casefh® space limitations prevent discussion of this
case.

I(l) denotes the set of links that conflict with linkwhen scheduled on the same chanhél) may include
links that also have an interface-conflict with link By convention,| is considered included im(l). Let
A(l) = A4(l). Note thatl € A4(l). Links that have an interface conflict with linkare those that belong to
E(b(l))UE(e(l)) —{l}; they are also said to be adjaceatlink I. The subset of (I) comprising interfering
links that are not adjacent fois denoted byl’(l). Let Imax= m|a>4l’(l)|, and letAmax= m|a>4le(l)|.

« K denotes the maximum number of non-adjacent linkd’{h) that can be scheduled on a given channel
simultaneously ifl is not scheduled on that channl.(|C|) denotes the maximum number of non-adjacent
links in 1’(l) that can be scheduled simultaneously on any of|thlechannels (without conflicts) if is not
scheduled for transmission. Note that here we exclude links have an interface conflict with

K|c| is the largest value oK (|C[) over all linksl. That is,K | = m|a><K|(|C|). Let Imax= m|a>4l’(l)|. It is not
hard to see that for single-interface nodes:

K < K¢ < min{K|Cl,Imax} 1)

We remark that the ternK as used by us is similar, but not exactly the sam&da [6]. In [6], K denotes
the largest number of links that may be scheduled simultagigdf some linkl is not scheduled, including
links adjacent td. We exclude the adjacent links. For future reference, weé nefer to the quantity defined
in [6] ask instead ofK.

« Lety be 0O if there are no other links adjacentltat either endpoint of, 1 if there are adjacent links at only
one endpoint, and 2 if there are adjacent links at both emdgoi

« yis the largest value ofi over all linksl. That is,y= mlaxy|.

« Load vector We consider single-hop traffic flows. That is, each flow arédes at one node and ends at an
adjacent node, using the link between the two nodes to trianbkm traffic (all traffic on a link is clubbed
together as one flow). The traffic arrival process for linis denoted by{A(t)}.The arrivals in each sldtare

1Though we assume that > 0 for all |, ¢, the results can be easily generalized to handle the caseewhe 0 for some link-channel pairs



i.i.d. with average\|. The average load on the network is denoteddad vectori> = [A1,A2,...,A )], where
A} denotes the arrival rate for the flow on link The load on some links may possibly be 0.
« QueuesThe packets generated by each flow are first added to a quentamed at the source node (depending
on the algorithm, there could be a single queue for each binlg queue for each (link, channel) queue).
Feasible load vectorin each time slot, the scheduler used in the network detexsnivhich links should transmit
and on which channel (recall that each link is a directed, limkh a transmitter and a receiver). In different
time slots, the scheduler may schedule a different set &&lfior transmission. A load vector is said to be
feasible if there exists a scheduler that can schedule transmissioch that each of the queues in the network
remains stable (or, bounded in size) when using that loatbrec
Link rate vector Depending on the schedule chosen in a given slot by the atdre@ach linkl will have a
certain transmission rate. For instance, using our natadlmove, if linkl is scheduled to transmit on channel
c, it will have rater{ (here we assume that, if the scheduler scheduled latk channet, it does not schedule
another conflicting link on that channel). Thus, tbehedulechosen for a time-slot yields knk rate vector
for that time slot. Note thalink rate vectorspecifies rate of transmission used on each link in a certaia t
slot. On the other handpad vectorspecifies the rate at which traffic is generated for each link.
Feasible rate regionThe set of all feasible load vectors constitutes the féas#te-region of the network, and
is denoted by\. A throughput-optimalscheduler is one that is capable of maintaining stable cquéreany
load vector A eAN.

o TO-schedulerlt has been previously shown [1] that a scheduler that ramiata queue for each linkl, and
then chooses the schedule given by argmaxqr|, where the max is taken over all possible link rate vectors
T is throughput-optimal. We will refer to this particular sahuler asTO-schedulerNote thatg; is a function
of time, and queue sizes at the start of a time slot are usedeafoo computing the schedule (or link-rate
vector) for that slot.

Imperfect schedulett is usually difficult to determine the throughput-optihtiak-rate allocations above since the
problem is typically computationally intractable. Thuisete has been significant recent interest in “imperfect”
scheduling policies that can be implemented efficiently[dly cross-layer rate-control was studied for an
imperfect scheduler that chooses (in each time slot) late-vectors such thaty g > & argmax- 5 qiry,
for some constand (0 < 6 < 1).

It was shown [2] that any scheduler with this property carbititee any Ioad-vector? € O\ — note that if a
rate vectorf is in A, then the rate vectohﬁ> is in dA\. OA is also referred to as th&@reduced rate-regiorif
a scheduler can stabilize aN ¢ O/, its efficiency-ratiois said to bed.

« Maximal schedulerUnder our interference model, a schedule is said to be nalxiir{a) no two links in the

schedule conflict with each other, and (b) it is not possibladd any link to the schedule without creating a

conflict (either conflict due to interference, or an intedamnflict). The performance of maximal schedulers

under various assumptions has been studied in much recekt eq., [6], [4], [5], [8]- However, the focus has
largely been on single-channel wireless networks. Sclimgluh multi-channel networks has been examined
in [6], and a queue-loading algorithm has been proposedgushich a maximal scheduler can stabilize any
vector in &2/\, for arbitrary 3. and3s values. This paper improve on the prior result, in additioptesenting

a new scheduler.

IIl. SCHEDULING IN MULTI-CHANNEL WIRELESSNETWORKS

As has been stated in the previous section, throughputapscheduling is often an intractable problem even in
a single-channel network, though imperfect schedulersabhieve a fraction of the stability-region can potengiall
be implemented in a reasonably efficient manner. When therenaitiple channels, but each node has one or few
interfaces, an additional degree of complexity is addedeims of channel coordination. In particular, when the
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Fig. 1. 2-D visualization of channel heterogeneity

link-channel rates{ can be different for different link, and channels, the scheduling complexity is exacerbated
by the fact that it is not enough to assign different chanteisterfering links; for good performance, the channels
must be assigned taking achievable rates into accountindividual channel identities are important. In [6], it sva
argued that if a simple maximal scheduler is used in suchwankf there could possibly be an arbitrary degradation
in efficiency-ratio (assuming arbitrary variability in es) compared to the efficiency-ratio of a maximal scheduler
with identical channels. Thus, they proposed a queue-hgadile to control the channels on which a link competes.

This rule requires knowledge of of the length of queues airaéirfering links, and achieves an efficiency-ratio

1
K+2°
Variability in channel gains over different links is very otua characteristic of real-world wireless networks,

and must indeed be handled by protocols and algorithms. kwé the solutions require extensive information-
exchange, the resultant good performance may be offsetédyntiteased overhead. Thus, it is crucial to consider
various points of trade-off between information and perfance. In this context, the quantitipg 3. andos defined

in Section Il prove to be useful. The quantitiBs and . can be viewed as two orthogonal axes for worst-case
channel heterogeneity (Fig. 1). The quantityprovides an aggregate (and thus averaged-out) view ofdgeaeity
along thef3s axis.3s =1 corresponds to a scenario where all channels have idkaotiaeacteristics, viz., bandwidth,
modulation/transmission-rate, etc., and the link-gai@ fnction solely of the path-los§. = 1 corresponds to a
scenario where all links have the same gain, but the chamnajshave different characteristics, e.g., an 802.11b
channel with a maximum supported data-rate of 11 Mbps, ar@DariL1a channel with a maximum supported data-
rate of 54 Mbps. In this paper, we show that in a single-iategfnetwork, a simple maximal scheduler augmented
with local traffic-distribution and threshold rules achésvan eﬁiciency-rati(%m. The noteworthy features

of this result are:

1) This scheduler does not require information about quetiésterfering links.
2) The performance degradation (compared to the schedtl])owhen rates are variable, i.e3s,c # 1 is
not arbitrary, and is at WOI’%%S‘ > % > ﬁ Thus, even with a purely local information based queue-
loading rule, we are able to avoid arbitrary performancerdegtion even in the worst case. On average, the
performance would be much better.
o]

3) In many network scenario \c|+ma>s<{1,v}|C\ may actually be better thap:5. This is particularly likely to
happen in networks with single-interface nodes, e.g., ss@pve have three channeld,c with r} = 1,r|b =
1,rf =0.5 for all links I. Then, in the network in Fig. 2 (where the link-interferergraph is a star withx
radial vertices, and there are no interface-conflicts), Weio a bound of.1-—, whereas the bound of Lin

0.4x+1.2?
and Rasool iaﬁ%z.
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Fig. 2. Example of improved bound on efficiency ratio: linkerference topology is a star with a center link andadial links

The multi-channel scheduling problem is further compkchif the ratesrf are time-varying, i.e.rf = r(t).
However, handling such time-varying rates is beyond the@ead this paper, and we address only the case where
rates do not exhibit time-variation.

IV. SUMMARY OF RESULTS

For multi-channel wireless networks with single-inteda@r single-radio) nodes, we present lower bounds on
the efficiency-ratio of a class of maximal schedulers (idsig both centralized and distributed schedulers), which
indicate that the worst-case efficiency-ratio can be highlkeen there are multiple channels (as compared to the
single-channel case). More specifically, we show that:

Il 1 }

« The number of links scheduled by any maximal scheduler atfginvat least a ma§(1<m+max{ly}\C|’ max{LK+y}

fraction of the maximum number of links activated by any feksschedule.

« A centralized greedy maximal (CGM) scheduler achieves &nieficy-ratio at least
o 1 i ; i
max{ K‘C‘+ma§{l7y}‘cl, max{l’KH}} This constitutes an improvement over the lower bound forGeM scheduler
proved in [6]. SinceK| | < K|C| <K|C|, this new bound on efficiency-ratio can often be substdpttajhter.

« We show that any maximal scheduler, in conjunction with apdéniocal queue-loading rule, and a threshold-
based link-participation rule, achieves an efficiencyeraif at Ieastm. This scheduler is of
significant interest as it does not require information alspueues at all interfering links.

In the rest of the paper, we elaborate on the results. Mosteftoofs are presented in tAgpendix.

Note that the text below makes the natural assumption thatlimks that conflict with each other (due to
interference or interface-conflict) aret scheduled in the same timeslot by any scheduler discusstm irest of
the paper.

V. MAXIMAL SCHEDULERS

We begin the presentation of the results with a result thatiegp toall maximal schedulers.
Theorem 1:Let Sopt denote the set of links scheduled by a scheduler that seeksaximize thenumber of
links scheduled for transmission, and Ktax denote the set of links activated byy maximal scheduler. Then the

following is true:
€] 1

, S
Ko +max{1,y}|C|’ max{1,K + v} HSop]

)

|Smax| > max{



Although we do not use this result directly to prove any of temaining results, this result makes the interesting
point that the availability of multiple channels can potalhy improve the ratio of number of scheduled links
compared with the optimal scheduler.

V1. CENTRALIZED GREEDY MAXIMAL SCHEDULER

A centralized greedy maximal (CGM) scheduler operates Bewie in each timeslot: (i) Calculate link weights
w{ for all links | and channels. (i) Sort the link-channel pairél,c) in non-increasing order ofif’. (iii) Add the
first link-channel pair in the list (with highest weight) tbe schedule for the timeslot, and remove from the list
all link-channel pairs that are no longer feasible (eithee do interface or interference conflicts). (iv) Repeat step
(i) until the list is exhausted (thus no more links can beled to the schedule).

In [6], it was shown that this centralized greedy maximal {@G&cheduler can achieve an approximation-ratio
at Ieasté in a multi-channel network, whene is the maximum number of links that may possibly be scheduled
concurrently as a result of removing another link from theestule. This bound holds for arbitrary values [&f
and 3¢, and variable number of interfaces per node. Though it isttig that there exists at least one network in
which the efficiency-ratio does not exceed the bound, it cargite loose on average, particularly in networks
where there are multiple channels but single-interfaceesoth this section, we prove an improved bound on the
efficiency-ratio achievable with the CGM scheduler. Retfadit W = qrf.

Theorem 2:Let Syt denote the set of links activated by an “optimal” scheduiat maximizesy wy by choosing
appropriate link-channel pairs, €) for transmissior?. Let ¢*(I) denote the channel assigned to link Sopt by this
optimal scheduler. Lefsy denote the set of links activated by the centralized greedyimal (CGM) scheduler,
and letc9(l) denote the channel assigned to a link S5. Then the following is true:

() { Os 1 } cr(l)
wo > max ; > W ®)
IGZS | Kiej+max{Ly}|Cl" max{L,K+v} ] | & !

9
The appendix present the proof. The above theorem implienéxt result:

Theorem 3:The centralized greedy maximal (CGM) scheduler can stabiied-reduced rate-region, where:

d= max{ 9 1 }
Kicj +max{1,y} C|” max{1,K+y}
Proof: We earlier discussed a result from [2] that any scheduleichvbhooses rate-allocatios such that
S gs >0 argmaxy qr, can stabilize thé-reduced rate-region. Invoking this result, and Theorerwe,obtain
the above result. |
Interestingly, the above bound is independenfaf

A. Extension to multiple interfaces per-node

We now describe how the result can be extended to networkseveaeh node may have more than one interface.

Given the original networlkode-graph G= (V,E), construct the following transformed gra@i = (V/,E’):

For each node €V, if v hasm, interfaces, createn, nodesvi, v, ...vm, in V. For each edgéu,v) € E, where
u,v havemy, m, interfaces respectively, create eddesvj),1<i<m,1<j<m, and sely,v;) = Auy)- Set the
achievable channel rate appropriately for each edgé’ iand each channel. For example, if channel-rate is solely
a function ofu,v andc, then: for each channe] setr?uhvj) = r?w).

The transformed grapl®’ comprises only single-interface links, and thus Theorenpgias to it. Moreover, it
is not hard to see that a schedule that maximizeg| in G’ also maximizes qir; in G. Thus the efficiency-ratio
from Theorem 2 for network grap®’ yields an efficiency-ratio for the performance of the ceiitesl GM scheduler
in the multi-interface network.

2This optimal scheduler is, in fact, the same as the TO-schedideussed earlier, applied to our network model.



Let us briefly touch upon how one would expect the ratio to vasythe number of interfaces at each node
increases. Note that the efficiency-ratio depend89(C|, K¢, y. Of thesef3s and || are always the same for both
G andG'. yis also always the same for a@/ derived from a given node-gragh, as it depends only on the number
of other node-links incident on either endpoint of a noaé-lin G (which is a property of the node topology, and
not the number of interfaces each node has). Howeger, might potentially increase is" as there are many
more non-adjacent interferinignks when each interface is viewed as a distinct node. Thus, favengiumber of
channels|C|, one would expect the provable efficiency-ratio to iniyiatlecrease as we add more interfaces, and
then become static.

While this may initially seem counter-intuitive, this is damed by the observation that multiple orthogonal
channels yielded a better efficiency-ratio in the singlesiiace case since there was more spectral resource, but
limited hardware (interfaces) to utilize it. Thus, the aatdial channels could be effectively used to alleviate the
impact of sub-optimal scheduling. When the hardware is consmete with the number of channels, the situation
(compared to an optimal scheduler) increasingly startesemble a single-channel single-interface network.

B. The special case ¢t| interfaces per node

Let us consider the special case where each node in the rkehasiC| interfaces, and achievable rate on a link
between nodes,v and all channels € C is solely a function olu,v andc (and not of the interfaces used). In this
case, it is possible to obtain a simpler transformation eGithe original network node-grafgh= (V,E), construct
|C| copies of this graph, vizGy,Gp,...,G|¢, and view each node in each graph as having a single-ineréaa
each network having access to a single channel. Then eawlonkegraphG; can be viewed in isolation, and
the throughput obtained in the original graph is the sum ef ttiroughputs in each graph. From Theorem 2, in
each graph we can show that the CGM scheduler is within{mqg%} of the optimal. Thus, even in the overall
network, the CGM scheduler is within mgk g<} of the optimal.

VIl. A SIMPLE MAXIMAL SCHEDULER WITH THRESHOLDS

In this section we present a simple extension to multiplenokés of the result of [4] for a maximal scheduler
with threshold-based participation. This serves as a psecdor the results of the next section.

The set of all links in denoted by. The arrival process of each linkis denoted by{A(t)}. For a given link
[, the arrivalsh (t) are i.i.d., andE[A(t)] = ;. However, we make no assumptions about independence wélarri
processes of two different links. MoreovéE|A (t)A(t)] is bounded, i.e.E[A(1)Ak(t)] <n for all | ke L, where
n is a suitable constant.

Theorem 4:1f Bs=1, i.e,,rf =1 for all | € £, then the following scheduling policy stabilizes the netwo

whenever % )r‘—:ﬂ—a > %‘ <1, foralll e L:
keA() kelr(l)
In time-slott, only links | with q;(t) > r| participate, and a maximal schedule is computed.

The proof is presented in the Appendix.

VIIl. A R ATE-PROPORTIONALMAXIMAL MULTI-CHANNEL (RPMMC) SCHEDULER

The set of all links in denoted by. The arrival process for link is i.i.d. over all time-slotg, and is denoted
by {Ai(t)}, with E[A;(t)] = A;. We make no assumption about independence of arrival pgesdsr two linksl, k.
However, we consider only the class of arrival processesviach E[A (t)Ak(t)] is bounded, i.e.E[A(t)Ak(t)] <n
for all I,k € £, wheren is a suitable constant.



Consider the following scheduler:
Rate-Proportional Maximal Multi-Channel (RPMMC) Scheztul

Each link maintains a queue for each channel. The lengtheofjtieue for link and channet at timet is denoted

by gf(t). In time-slott: only those link-channel pairs withP(t) > r{ participate, and the scheduler computes a
maximal schedule. The new arrivals during this slot, Agt) are assigned to channel-queues in proportion to the
rates, i.e. \f(t) = Nrf

2
be

. ili i Os -
Theor.em 5:The RPMMC scheduler stabilizes the network for any loadamwithin theW reduced
rate-region.

The proof is presented in the Appendix.

. — i i i |C]
Corollary 1: Whenfs= 1, the RPMMC scheduler achieves an efficiency rati O e Ty

IX. CONCLUSION

We have presented bounds on the efficiency-ratio achievezktigin maximal multi-channel schedulers. In par-
ticular, we have proposed a scheduler that can achieve tatdeperformance with limited information. Promising
directions for future research include designing low-tnad algorithms for computing maximal schedules in multi-
channel networks, and further exploring the trade-off lestw information-exchange and performance.
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APPENDIX

Recall thatSmax is defined in the statement of Theorem 1 as the set of linksdsbbe by any maximal scheduler.
Also recall that$y is defined in the statement of Theorem 2 as the set of linksdsibe by the CGM scheduler.
Also, Sopt is defined as the set of links scheduled by the optimal sckedahere the notion of optimality is as
defined in each of Theorem 1 and Theorem 2. In the followingpfxowe may use the teryon, Which is a
concise way to refer to eithefg N Sopt OF SmaxN Sopt, depending on the context of that particular proof.



Proof: (Proof of Theorem JLConsiderl € Soptmm. Denote byc™(l) the channel on which is scheduled

in Smax Sincel was not scheduled by the maximal scheduler, this impliesahbeast one of the following events
must be true:

1) Condition 1:SmaxNSoptN (E(b(1)) UE(e(l))) # @.

2) Condition 2: For each channek C, there exists some link. € SmaxN1’(l), such that™(l}) = c.

Now, define set®\s and A, as follows:

Ais ={1:1 € SoptNSmax and Condition 1 holds Zin = (Sopt N Smax) — it

Thus 4 comprises the set of links i.ﬁopm%that are blocked in the maximal-schedule by interface-axisfl
while A, comprises the set of links iSopt N Smax that are blocked in the maximal-schedule purely by channel-
interference conflicts. For eadhe 4, let 97 = U {I¢: 1 € SmaxN 1’ (1),c™(1%) = c}. Any link 1" € Smax can occur

ceC
in the 97 of at mostK| non-adjacent links$ € Sopt. Thus, it follows that:
|C‘|/qin‘ < K\C||5max‘ (4)

Any interface-conflicts experienced by links §gpt N Smax Must necessarily be caused by Iinkssmaxmm. Since
a link can only cause up tg interface-conflicts, we obtain that:

| it | <Y [Smax Sopt] (5)
Thus we obtain the following:
|50pt| _ | SmaxN 5opt| + |SmaxN fpt‘ _ | SmaxN 50pt‘ + | %t | + | 4inl
|Smax] |Smax] | Smax
B K|
< | Smax Sopt| + Y| Smax Sopt| + % | Smax]
B | Smax]
— — K
_ | SmaxN Sopt| + | SmaxN Sopt| + (Y — 1) [SmaxM Sopt| + % | Smax (6)
| Smax]
_ |Smax + (Y= 1)|Smax 50pt| + %b‘max‘ < |Smaxl + mMax{0,y— 1}|Smax + % | Smax

from (5), (4)

| Smax! - | Smax]
K K
= 1+max{0,y— 1} + ﬁ = max{L,y} + %

We now prove another bound, VizSmax > Wx{w}mpd.

Consider a linkl that is scheduled on some changeh Smax Eitherl is scheduled on channeleven inSypt,
or if I is not scheduled itSopt, at mostK links in I’(1), andy links in A(l) — {I} could have been scheduled on
channelc in Sopt. Thus:

[Sopt < max{1,K +y} (7)
| Smax|
: cl 1
Thus:[Smax > max{ K|C‘+m‘ax{1,v}\C\’ max(L KTy ) [Sopl- "

Proof: (Proof of Theorem @
Denote byc*(l) the channel on which € Sopt is activated by the optimal schedulef(l) is the channel on
which | € Sy is activated by the CGM scheduler.
Considerl € SoptNSy. Sincel was not scheduled by the CGM scheduler, this implies thaeadtione of the
following two conditions must be true:
1) Condition 1: There exists a linkK € S3M Sopt N (E(b(1)) UE(e(l))) such thatwlc,g('/> >w for at least one
channelc € C.



2) Condition 2: For each channek C, there exists some link € SgN1’(l) such thatwﬁ,: > W

Now, define set#\; andAj, as follows:

s ={1:1 € SoptNSy and Condition 1 holds

Ajn = (.SOptﬂsSg) Ay

Let Soothmore= {1 : 1 € Sg ﬂSopt7W| 0 > Wf*(l)}
Let Shothless= {l : 1 € Sgﬁ.Sopt,Wl 0 < wf*“)}

Then Spothmore @aNd Shothless CONstitute a partition 08y N Sopt.

Let 4is 1 ={l :1 € 4¢,c*(I) was not available td when!’s first interface got used up during CGM scheduling

Let 4ir o= {l :| € 4is,c*(]) was still available td whenl’s first interface got used up during CGM scheduling

From the greedy nature of the scheduler, if a llhk I'(1) was scheduled on sonwes C in Sy while | was still
schedulable on some subset of chanmBls C, this implies thatwy, > wfj for all d e D.

Note that for alll € it 1, and Spothiess it Must be true that some link € (1) was assigned*(l) in Sy while
| was still schedulable on*(l), i.e.,c*(l) € Dy, where?) is the set of channels on whidhwas still schedulable
whenc*(l) was first assigned to some link IA(l).

Moreover, it is true that at the time whére Sbotmess was assigned?(l), all otherc e C with rf > rlcg(') were
already assigned to some othée I'(l), with Wv "~ =W, > W. Thus for allde Dy, rf <r/ o) ,and|Dy| <|C|—
sincec*(I) ¢ Dr. Therefore for eachh € Spothless ¥ S W|, ) > ZWC Z wd > ZW" (IC] —l)ng“).

ceC-D Iel’(l) ceC ceC
cI(1")=c
. (1)
Thus: Sy W, > 5y Yw-(c-1 > Wil
I €Spothless ceC—D I'el’(l) I €ShothlesCEC Iesbothless

c9(1"=c
Similarly, it is true that ifl’ € (1) N (SgNSopt) Was assigned a channeQ( ") in SgNSopt While | € 4 1 was
still schedulable on some subset of chanrBls— ¢ —{c*(l)} thenvvl, >wd for all d € Dy, and|Dy| < |C| -
sincec’(l) ¢ 7. Let us denote byf (1) the link I” in SgNSopt that is the cause of blocking the first mterface of
link | € 4.

LetB= Y w‘f’gl( ) Then, it is evident thaB <y > wfg('). Furthermore, ¥ >3 chlg(v) > 5w

I€Aif 1 1€5gMSopt cec-n C';il/’)(_)c cec
9(f(| 9"
Z W' > 3w — |C|—1)w‘;(f)()), and resultantlyzl 33 w, | > Z > wi—(|cl—
ceC Ieqjf 1 | c€C-D clg(ell’)(—)c IEAjf 1cEC

In light of this, and the definition oA, and os:

> o dwi-(c-1) S w +Z >wi—(Icl- B+z ZV\F<K‘C‘ZW|

| ESpothlescEC €5both|ess IE/Qllf ,1ceC I€jnceC 659
> wley wiley ow <sz Hlel=D > W ®)
|€~5bothless l€aif 1 I€4in = |€5both,less
C c9(1 -1 c
D4 wo w _—H w<)+7| | ( W<>+B)
| | o | o |
|€5b0th|ess lea;t 1 I€4in S €59 S I €Shothless

Furthermore, if a linkl’ adjacent td was scheduled 5y N Sopt at a time when was still schedulable on* (1),

as is the case for links it 5, then it implies thawf ) >w’ . Let E = S w?jl()m)). Thus we obtain:
l€4it 2

1€t 2 1€SgNSopt

Y w <y >

l€dit 2 l€SgNSopt

9)



This yields the following:

z ch*(l) Z WIC*(U_,_ Z WIC*(U

s Wl v wlis Wiy wley Wl

1€4in

I €Sopt _ IE€Sboth IE€SoptNSy |€5bothmore | ESbothless l€if 1 l€4if 2
c9(1) c9(1) c9()
2 W 2 W 2 W
1€5g €59 1€5g
cr(l c(l c(l c(l c(l
WO g Vry WOy WOy Wl
B I €Shothmore | €Spothless l€aif 1 I€ajn €4t 2
- c9(l)
W
|€5g
. K\C\ZVW +(cl- > WI
g |650 ess g
S =0 W+ G +y 3 wi'-B
W| I €Shothmore S | Eﬁgﬂm
|659
from (8), (9)
1 e " el 0 3
| S
< o W|CQ(|> Sg _ ESbothless +y z chg(l)_B
Z W | € Sbothmore s 1€85gNSopt
|€59
g g 9
Kic| ZWI +lcl-(ywV— s wWl- 5 wliB
1 c9(1) 1€5g | €Spothmore l€85gNSopt
= S0 W o
Wl I €Shothmore S
|€.Sg
Os(Y z
|€Sgﬂ§pt
Os
| c9(1
KmZW, +(|Cl— ZWl — z wl()— Z Wl()—I—B
1 |C| c9(l) €59 €59 | €Sbothmore 1€85gNSopt
S w0 | o8 e o
Z W| S I €Shothmore s
|€5g
c9(1)
v 5w (cl-ve
I Sopt .
€5 Sopt noting thaty W,Cg(')—Bzo
Os | S5 Sopt
91 9(1 9(1
(-9 3 W+ 3 WKy
< 1 | €Spothmore | €Shothmore 1€5g
- ng(l) Os
|€5g
I c9(
(Ic]— ZWl z vv|<)— z WI +B+y z WI 0 —B)+vy z Wl(
n I 659 I Esbothmore | Gng.Sopt | Eng.Sopt | E‘S‘gmfpt
Os
1 c9(I c9(l)
(Icl— ZW| ) z W Z W| +V z w )
1 K| ol c9(l) I€5g 1€85gNSopt | E€Sbothmore 1€85gNSopt
A | oo Z P o
W S 15, s

- Kie 4+ (IC] = 1)(1+max{0,y—1}) + max{1,y}
Os
K +max{1,y}|C]
Os




(1) _ ; : Il
Thuslzs wI > W z wI . WhenBs = 1, this reduces to a ratio Ty
€ g E

We now prove another bound by showing that:

chga) 1 cr(1)

> —— Y (11)
1€5g maX{l’ K+ V} |€§opl

This is obtained via an argument very similar to that usedjrtg prove a bound o% for the CGM scheduler,
except that we refine the analysis based on a more precisactbidzation of the interference topology:
Consider any link in Sg. Eitherl is scheduled om9(l) even inSop, or if | is not scheduled ond(l), at most
K links in I’(l), andy links in A(l) —{I} could have been scheduled d#{l) in Sopt, and each would have weight
less than or equal ta{"". Thus:
wf*(')
I €Sopt
W
1E€3

<max{1,K+y} (12)

Proof: (Proof of Theorem ¥We describe a proof of stability based on Lyapunov driftlgsia.

We adopt the following convention: at the beginning of edatetslot, the scheduling decisions are taken, and
transmissions occur. Then new arrivals occur at the endektbt (thus new arrivals cannot be transmitted in the
same slot, even if there is spare bandwidth).

Let the queue-length of link at slott be denoted byj (t). Let the rate-allocated to linkin slott over channel
¢ be denoted byf(t). Since we are considering single-interface nodes, fd 1, and a link only participates in
a slot if g (t) >ry, it follows that ZXIC(t) € {0,r;} and at most one of thef(t)’s is non-zero for a link.

ceC
We assume that > 0 for all | € L, since any feasible load-vector must haye= 0 for any link| with rj =0
and thus such links can be ignored/eliminated from conatater.
The following is trivially true for any feasible set of arel/processes:

M<nvleL (13)
The queue dynamics are as follows:
Qt+1)=at)+A- 3 X () (14)
ceC
We define the following Lyapunov function:
a(t) o) 1 k(t)
Vg(a@) = ( +— (15)
IGZL r ke;(l) e IClhmy Tw

This Lyapunov function is similar in form to that used in [4].



Then, it can be seen that:

WGﬂH4NfM{G®%:ZqM+1) a(t+1) 1 %a+n>

5 a® &M 1 ¢ %O
ez N <ke;(l) +|C|ke|z' rk)

| r ) Mk +mkel’(l)
—zq'(t)( at) , 1 qk<t>>
o\« o IChdmy T
_ m( ) 1 qk<t>>+zq|<t>< 5 @D oa) | 1 <qk<t+1>—qk<t>>>
o\ o IChmy ez " \ka Mk IClmy Mk
(at+1)—a(t)) () 1 Gk(t)
Jr|ezL ri (keﬂ(l) Mk Jr|C|ke|'(|) Mk )
(a(t+ ) th+1 —() 1 (k(t+1)—a(®) ) <al) a(t) 1 ak(t)
+|eZL (ke;(l +|C|kelz(|) Mk ) e N (keﬂ(l) Tk +| )
a) ( (ult+D-adt) | (G(t + )—qka)))+z<q|<t+1>—q|<t>>( a1 ¢ )
r=rd k() | |ke|’(|) Mk r=d r k& IChm
py @ty q.())( 5 @D o) | 1 <qk<t+1>—qk<t>>>
3 KT Mk |Clymy Mk
:22|(t)< (Glt+1)-qet) , 1 (qk(t+1)—qk(t>)>
e o \kéan Mk |l Mk
L5 @ty q.())( (Gt +1) —a(®) | 1 <qk<t+1>—qk<t>>>
=3 r KT M |Clyry Mk
(16)

Denote by£/(t) the set of linksl for which q;(t) > r; and which therefore participate in the scheduling process

during slott. Since the computed schedule is always maximal, it follomat for eachl € £/(t), either (1)l is

activated in slot, or (2) some linkke (4(1)—{l})nL/(t) (i.e., adjacent td) is activated on some channel, thereby

blocking | through interface-conflict, or (3) for each chanmet C, at least one link € £/(t)

NI'(l) is activated
in slott on channek, thereby blockind through interference-conflict.



€L kel Ik
Lyel@tD-a) (o gt a1 (qk<t+1>—qk<t>>>]
=3 r kea() Mk IClmy Mk
" MU= RO A(t) = > % ()
<2 I z E ceC 4+ = E ceC
ez "\ kT Tk Cle) Mk
A(t Ak(t 1 Mk(t
SE .<>< (), 1 m)]
& |\« "« IChm)
) 5 ()
<2 I(t) ﬁ i M _E ceC + i ceC o}
& kG 1Chm v kean) Tk IClimy T
X (1) LA
o M\ k IClm) T kean Tk Clery T

o] (t) ( Ak 1 )\k>
+2 —_— — 4+ — — |1 +C
2 ke;(l) e |C| kelz/(l) Mk

ai(t) a(t) qi(t) a(t)
gzl Z T(1—5—1)—2 z/ Ts+2 z, Ts+2 z/ —( —+
T lecS) =) lecS)

(substracting and adding back 22
leL=z/t) '

gzequ'r(lt)(lschz

|
—2¢€

=—>alt)+C
Imax|57
2L Imax
whereC, = W andCp = Cy + 2| L| + 2| L|(Amax+ Hm—c;ﬂf).

Invoking Lemma 2 from [9], this proves stability.

17)

Proof: (Proof of Theorem 5yWe describe a proof of stability based on Lyapunov drift gsial

We adopt the following convention: at the beginning of edafetslot, the scheduling decisions are taken, and
transmissions occur. Then new arrivals occur at the endeftot (thus new arrivals cannot be transmitted in the

same slot, even if there is spare bandwidth).

Let the queue-length of the queue for lihland channet at the start of time-slat be denoted byy’(t). Let the

rate-allocated to link in slott over channet be denoted by (t). Since we are considering single-interface nodes,

at most one of the¢(t)’s is non-zero for a link. Furthermorexf(t) = 0 if link | is not scheduled over channel

in slott, andx(t) =rf else.

Recall thatr; = maxrf. By assumptiorr? > 0 for all | € £,c € C. However, as noted earlier, the result can be

ceC
easily generalized to allow some of these to be 0.



The queue dynamics are as follows:

A()rf
L =040 10 whereaf() = " 18)
beC !
We define the following Lyapunov function:
qr(t) ge (t qe(t)
(@ =53 Y [ i (z G, g A (19)
lez cec | "I \kéapydec 'k ker) Tk

This Lyapunov function is somewhat similar in form to thaedsn [4], but now uses per-channel queue-lengths.

Then, it can be seen that:
qf(t+1)< s 3 EHY g A >>
re keﬂ(l)dgC rg kE)

e q c(t)
IEZCEZC[ re ke%(l) =a ke Ty Tk )]

<qﬂ<t>+qs<t+ ~q) | +qkt+1> QE(t))ﬂ
keﬁl(l)dgc rg ker)

Vo(T(t+1)) —Va(q (1) =

leLceC

d
C k
qt) qﬁ(t)) qf(t)< (Gt +1) - (ot 1) - qﬁ(t»ﬂ
(ke;(l)dgc r Jr|<e|/<|) rk JrleLcezc re ke;u)dgc M Jrkel/(l rk

_ qr(t)
& T i
(af(t+1) —gf(t) ae(t) ge(t)
Jr|eLcec re (keﬂ(l)dgc‘ r Jrkeva) re
. (G(t+2) —d (t))( 5 D V) o (D ) ]
1e2éee i kea(ydec Mk k() "
) al(t) QE(I)>
Gl (keﬂl(l)th M +ke|’(|) e
_ o (t) (a(t+1)— (1)) (cg(t+1 —qﬁ(t))ﬂ
IeLceC[ rf (ke;(l)dgc rg Jr|<e|/(|) re
(F(t+1) — o¥(1)) ai(t) qﬁ(t)ﬂ
Jr|ezL e Iy (ke;(l)dgc rg Jrke|'(|) re
. <q|°<t+1r>cqf<t>>< 5 5 <<:|E<t+1r>dq‘k’<t>>+ 5 (qﬁ(t+1r)cqﬁ(t))>]
1€ éeT [ keA()dec k kell) k

2y [qup( 5 dZ(qE(tH)d_qg(t))+ s (qﬁ(t+l)c—qﬁ(t))>]
 \kéandee r

I€L deT e ke k
(gf(t+1) —qf(t)) (o (t+1> A ) k(1)
+|ZL z | o | ( z [Z Kk r + z k ]
€L ceC I kea()dec k kel(l) (20)

Denote byZ/(t) the set of link-channel paird, c) for which gF(t) > rf. This set of link-channel pairs participates
in the scheduling process for skotBy assumption, the scheduler computes a maximal schedeteal) participating



links. Thus, for alll € £ andce C, wheneverqlc(t) > r|°:

xC(t)
S dz ki > (21)
keadee kel/(l "

_
If A lies within the -reduced rate-region, then, by assumption, there existsesscheduling

¢
\C\era;{l,v}\f\ ) ) _
algorithm that achieves stability with load vect C‘+m2:{ -,v}IC\) A . Similar to [6], we can argue that this implies
existence of an average service-rate veoivfofor all I, c satisfying the following, for some > 0:

K max{1, ~ .
(1+£)2< ci + max yHC') N < 3 % for alllinks | 22)
Os ceC
z = < K| for all links | (23)
kel’(lceC k
ﬁc <max{1,y} for all links | (24)
keA(l) ceCrk
Setx’ = e (Kmf;;x{ly}lc\ Then from (22), (23) and (24), we obtain that:
(1+g)A < 5 X for all links | (25)
ceC
X < K|c|Os f .
— < or all links | (26)
Endmn Tk~ (1) (Ko +max{1,yv}|cl)
E maX{l,y}O'S .
- < for all links | 27)
ke;(l)tgcrg (1+&)(Kjc) +max{1,y}[Cl)
This yields that for all linkd:
€, < % —;
APHE S IR CPSE Ep T
bec \kea(hdec 'k kel() 'k keaydeck  kernbee Tk (28)
max{1,y}as|C]| Kic(0s

= oK +maxqLylICl) | (A+e)(Ke+maxLylc]) ~ o8

Sincerg < ry for all channelsc, Z rE > asfk > agfy, for all ce C. Thus, we obtain that for all linkk
beC

O'

ZXE b b d b
bec Xg Xy 1 ( X Xe >
+ < S + = S ket <1
ke;(l zrl S0P <kez(l cebec OsTk kelz’(l beCOSrk> GSbgc ke;(l) =a k() rk

using (28))

(29)

When A, =0 for all I, the queue-lengths are trivially stable. Hence, let us @olysider the case whepg > 0
for at least one link € L. Let ymin = mln . Let Qinit = max q'ﬁ(,ﬁ), i.e., Qinit is the maximum of the initial

le )\|>0 '
normalized queue-lengths. Note thaf\jif= 0 for some linkl, thenﬁrl(,ﬁ) < ‘Lflﬁ) < Qinit for all channelsc.



by | d0) (5 dzqﬂ<t+1r>dqz<t>+ s <qﬁ<t+1r>cqﬁ<t>>ﬂ
€L ceC I kea(dec k kel™(l) k
of(t) Mo —x) A () — (1) >
2 E E|l —ft—7-—=
: & 7 (keﬂ(l)dgc [ rg Jr|<e|z/(|) [ e }

AF(t) ( () Aﬁ(t)ﬂ
+2 E |- =+
|EzL cezc l rf ke;(l)dgc rg kelz’(l) rg
c(t A(t Ak(t xd(t C(t
<oy 540 (¢ 5 () 5 M| l dzkg>+zxk<c>]
€z e i kea(dee Zcrk kel/(l)bzcrk keandee Tk kdmy Tk
c
A(t M(t Ak(t
4o AR )b dz k(t) k( )b
ZE | 20 kG DR kT D Tk
beC be beC
C(t M(t Ak(t t t
<oy 540 (¢ 5 () 5 M) _E[ dzxﬁg>+zxﬁ<c> G
ez & N kea(dee Zrk kel Zrk keandec "k kdmy "k
cC beC
(t A A t C(t
<2 q,(c) Y =5+ Y =%-F dlegg)+ 3 Xk(c) +C
& T kG YR kI 2 keandee "« kdmy Tk
beC beC
qr(t) Ak Ak X3 (t) % (t)
=2 lrc dz p T b_E dz kd + z rc
(loer/@ 'l keanyder 2 Tk kel’(l)zrk keandee "'k kdmy Tk
beC beC
C(t A A t t
+2 q'Q dz . kbE[ dzg)Jr )3 X‘@) +C
toecso-cm o\ kéander 2 'k k) 2 Tk keandec 'k kdmy 'k
beC beC
Xg X
ar(t) Ak Ak bee bee
<2 + = +
(I,c)ezL(t) rf keﬂ(l)dngrlt() kel (|)Zr|l2 keﬂ(l)dgC re kelz'(n re
beC beC beC beC
o o
zxk Xk Xd
t xE(t
+ dzbecb+ ber —E[( z dz kg)+ ki))]
keander 2 "k k) zrk keandee "k k) Tk
beC beC

using (25), (21) and (29)



(o)e(LxC)—L/'(t) 'l (loe(Lxe)—L't) 'l

C C
+2 z a) ( Z cgc)\kJr Ak) +C; (subtracting and adding back 2 Z 4 E:t)symin)

’ re k 7 k /
(lo)e(Lxe)—L'(t) | keA(l) kel’(1) (lLoe(LxC)—L/(t) I
C(t C(t o(t A
< Zz a E;) (—&Ymin) + 2€Ymin z z Qinit + 2€Ymin Z 4 (c) +2 4 <c ) ( dz 2k k) +C
€z & i €1 ¢eT (oeLxe)—cwy (oecxo)-cw) T \kcamdee ™ k) T«

AN=0
(where the second term compensates for including linkavingA; = 0 in the first term)

< 267" g (1) + Cq

Fmax &7
(31)
whereCy = 2EICN el Hinad | and Gy = C; + 2eymin] £]|C|Qint +28Yiminl £1 | + 21 £]|Cl (Amaod C| + I 2
Invoking Lemm:lale L2 from [9], this proves stability. [ ]

3Note thatqirlsi) <1forall (I,c) € (L x C)— L/(t), and for any feasible load-vectox : %‘ <lforallle”L





